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Abstract 

It is shown that for a centrosymmetric crystal, and 
within the range of validity of the three-beam approx- 
imation, the phases as well as the magnitudes of the 
three structure amplitudes can be measured uniquely 
and directly from the geometry of the intensity 
distributions in the discs of a convergent-beam diffrac- 
tion pattern. In fact, the solution is given in terms of 
three distances measured on the diffraction pattern. It is 
further shown that the inversion is independent of 
thickness. Three proofs are given, each illustrating a 
different aspect of the physical processes involved. In 
the first, the fundamental symmetry of the diffraction 
process is shown to be that of the special unitary group 
of order three and the Gell-Mann representation is used 
to construct three sub-algebras, in terms of which the 
explicit solution is written. SU(3) is shown to have 
particular significance in crystallography, namely, that 
it is the group of lowest order with symmetries that can 
be analysed to yield structural phase. The second and 
longer method involves the projection of the scattering 
matrix into the spaces of the eigenvectors. Unlike the 
first method, this makes use of a basis; however, it is 
not necessary to calculate explicitly either the eigen- 
vectors or the eigenvalues. The third method, based on 
the Bloch-wave expansion, shows that the system is 
characterized by three lines, which are ruled on one of 
the dispersion surfaces, and that all of the information in 
the system is embodied in these lines. Although this 
theory is scalar and developed here for electron 
diffraction, it can apply equally to the right circular 
component of the wave function of X-rays. Some brief 
remarks are made on the practicability of this method 
based on preliminary experiments that indicate that 
phase is the easiest of the parameters to measure. 

1. Introduction 

It has been known theoretically for some time that, in 
the three-beam approximation and for centrosymmetric 
crystals, both the magnitudes and the phases of V(g), 

t On leave from Department of Applied Physics, RMIT, GPO Box 
2476V, Melbourne, 3001 Australia. 

V(h) and V ( h -  g) can be determined directly and 
uniquely from the geometry of the intensity distribu- 
tions in the discs of convergent-beam electron diffrac- 
tion patterns (Moodie, 1979). IV(g), V(h) and V(h - g) 
are the Fourier coefficients of the crystal potential, 
which are referred to here as the structure amplitudes.] 

The original proof was lengthy and complicated and 
never published in full. Subsequently, a less involved 
proof based on a projector-operator formalism (Hurley, 
Johnson, Moodie, Rez & Sellar, 1978) was outlined at 
the XV Congress of the IUCr in Bordeaux (Moodie, 
1990) along with an extension to the noncentrosym- 
metric case. It is the main purpose of the present 
communication to present a full but compact proof in 
which the symmetries inherent in the equations of high- 
energy dynamical electron diffraction are exploited by 
an appeal to some of the elementary properties of Lie 
groups and Lie algebras. This method exposes the 
fundamental mathematical structure of the system and 
so offers both economy of effort and the prospect of 
generalization to noncentrosymmetric crystals and to a 
greater number of beams. 

Since additional physical insights can be gained from 
different models, proofs are also outlined in terms of 
Dirac-projector operator and Bloch-wave formalisms. 

2. Outline of the technique 

In the two-beam approximation, the wave function of 
the diffracted beam (gl is given by 

sin[(zr~') 2 + tr2V(g)V(~,)]l/2z 
<glSl0) : exp{iTr(z}icrV(g) [(7r02 -~- ty2V(g)V(~)]l/2 , 

where g" is the excitation error, 

S =  exp{i(crV(g ) crV(~) 

is the relevant scattering matrix and cr is the interaction 
constant (Cowley & Moodie, 1992). Since in the wave 
function the structure amplitude of the diffracted beam, 
V(g), is always multiplied by the structure amplitude of 
the coupling beam, V(~), no phase information can be 
recovered from the two-beam diffraction pattern. 
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In the three-beam approximation, however, triple 
products of structure amplitudes, those of both dif- 
fracted beams, V(g) and V(h), with the coupling beam, 
V(h - g), necessarily form part of the wave function so 
that phase information is certainly contained in the 
diffraction pattern. What is required is a method for 
extracting it. The method that is described in this paper 
involves the decoupling of the scattering equations in 
such a way as to identify certain loci of ( in the three- 
beam convergent-beam pattern along which the inten- 
sity distribution I(() is of two-beam form; that is, to 
identify certain loci of ~ for which, for some beam(s) q, 

(qlSI0) = exp{iuz}iA(sin/3z)//3. 

The distribution of intensity along these loci is thus 
centrosymmetric with respect to the excitation error ~, 
I ( ~ ) -  I ( -~) ,  and this allows them in practice to be 
uniquely identified, tr, A and/3 are determined in terms 
of the three-beam parameters so that, although the 
intensity distribution along the loci mimics that of a 
two-beam system, all of the information characterizing 
the three-beam system is retained and, in particular, is 
made accessible through the simplicity of the two-beam 
form. 

It is shown that the values of ~ at two specific and 
directly measurable points along the loci are sufficient 
to determine I V(g) l, I V(h) l, I V(h - g) l and the sign of 
V(g)V(h)V(h-g); that is, to invert the diffraction 
pattern. In addition, it is shown that the geometry on 
which the inversion depends is independent of crystal 
thickness. 

3. Inversion directly from inherent dynamical 
symmetries 

3.1. Defining equations 

The starting point is Tournarie's (1962) semi- 
reciprocal equation for the forward elastic scattering 
of fast electrons, / 1) 

0 
d ; u ) / d z  = i l ~ l u ) ,  l u ) z = 0  - 10) - 0 , 

with the formal solution in the projection approximation 
(Sturkey, 1962), 

lu) = exp{iMoz}10) - $10). 

For N-beam scattering, the fundamental symmetry is 
therefore that of U(N), the unitary group of order N. 
This group can always be factored into the less 
complicated groups U(1) and SU(N), so that 

S = exp{iMoz} = exp{ioz}E exp{iM,z}, 

with E the unit matrix, exp{ioz}E in U(1) and exp{iMsz} 
in SU(N), the special unitary group of order N. 17 is 
chosen to make M s traceless. 

In the present work, N -- 3, so that the group to be 
analysed is SU(3), a much more complicated mathema- 
tical entity than SU(2), the group of the two-beam 
approximation. This additional complexity is to be 
expected in view of the greater physical content of the 
system and, above all, because of the influence of 
structural phase on the distribution of scattered 
intensity. SU(3) in fact has the particular significance 
in crystallography that it is the group of lowest order 
with symmetries that embody and can be analysed to 
yield structural phase. 

The analysis takes the form of determining for what 
angles of incidence the three-beam approximation has 
an intensity distribution with two-beam form, a course 
of action that is suggested by the fact that SU(2) can 
form a subgroup of SU(3). The possibility of achieving 
this is explored by determining what functional relation- 
ships must be imposed on the diagonal terms of the 
scattering matrix in order that it describes a system with 
the symmetry of SU(2). There is of course no a priori 
reason to believe that this will be possible, but a 
necessary condition is that (glM~10) / V(g) should be real 
(Moodie & Fehlmann, 1993). While this condition can 
be satisfied to various approximations in a number of 
noncentrosymmetric space groups (Moodie & Whit- 
field, 1994), it cannot in general be satisfied in P1 even 
in the three-beam approximation. In the first instance, 
therefore, only the centrosymmetric case will be 
considered, that is, the discrete symmetry of inversion 
associated with the space group of the crystal will be 
combined with the continuous symmetries of SU(3) 
associated with the scattering equations. 

There are well established methods for determining 
whether a crystal is centrosymmetric (Goodman & 
Lehmpfuhl, 1968) and therefore whether the technique 
described in this paper is applicable. (These methods 
derive from the fact that Friedel's law is broken in 
dynamical scattering.) 

3.2. Conditions for equivalent two-beam forms 

If at least one diffracted beam is of two-beam form, 
independent of thickness and of any relationships 
between the structure amplitudes induced by symme- 
tries other than that of a centre of inversion, then, for 
some beam (ql, and with c~, 13 and A real but otherwise 
arbitrary, 

(qlSl0) = exp(ictz}iA(sin ~z)//3. 

Thus, exp{-ictz} (qlS~0) is required to be antisymmetric 
in z and hence (qlM'nl0) must be zero for all positive 
integral n, for at least one (ql and with M defined by 
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exp{-ic~z} (ql S[O) = (qlexp{-iotz}E exp{iMoz} 10) 

Explicitly, (-o 
M = crV(g) 

aV(h) 

Now, 

with 

= (qlexp{iMz}[O). 

,rV(g) ,rV(h) ) 
2 n ' ( g - a  c r V ( h - g )  . 

crV(h - g) 2rr(h -- a 

exp{iMz} = exp{i(r / -  a)z}E exp{iMsz } 

17 = (2zr/3)((g + ~h)" 

M s is symmetric and traceless, belongs to the algebra 
su(3) and can therefore be expanded in, say, the Gell- 
Mann bases (Gell-Mann, 1962) (Appendix A). The Lie 
algebra of order N is spanned by N 2 - 1 bases so that 
eight are in general required in su(3). Since M s derives 
from a centrosymmetric structure, however, it is 
symmetric rather than Hermitian and consequently 
only the five bases of the 'centrosymmetric' anti- 
commutator sub-algebra are required, namely, 21 , 24, 
26, 23, 28 (using conventional notation, Appendix A). 
The first three relate to potential energy and the last 
two, which are diagonal, to kinetic energy. The 
symmetries of the system are then summarized as 

2i2  j -4- 2 j2  i ~ {2i,  2j} - -  (4/3)~/jE + 2dijk2k, i.e. 

where dij k are the structure constants of the anti- 
commutator sub-algebra, given by 

dok = ~tr({2i, 2j}2k) 

and listed in Appendix A. Thus, 

Ms = la121 + 1a424 + la626 -I- la3A3 + 1a828 

and 

M~" = 2na121 + 2na424 --[- 2na626 -+- 2na323 -3 t- 2na828 , 

where the ,a; incorporate the structural and orienta- 
tional parameters of the three-beam system, for 
example, lal = crV(g). If we write ~-]5 z,,ai2i for the 
summation over the five bases, the condition for 
antisynunetry that leads to a two-beam form is that cr 
must satisfy 

(ql [(o - + - 0  

for at least one (ql. 
Now, as can be seen from the relation 

d,i/k=~tr({2/,2:.}2k), the only sub-algebras of the 
'centrosymmetric' sub-algebra compatible with this 
condition are those spanned by 2]. 6, 23, 28; 24, 23, 28 
and 21 , 23 , 28 , and these generate the forms Now, 

mll 0 0 

M b 2 = / ;  m22 m23 , 

m32 m33 

Mg m22 0 , 

\ m31 0 m33 

{ m l l  m12 0 / 

M2 = |m2~ m22 0 . 

\ o  0 m33 

It is not, of course, yet established that the constraints 
imposed by any one of these forms are physically 
admissible, so it is necessary to analyse each separately• 

3.3• The form M~ = (m~, m220 o )  spanned by the bases 
26'  ~'3' ~'8 \ 0 m32 m331 

Equating m21 to zero gives 

m21 = ~V(g)(2zr(g - 2~) + ~2V(h)V(h - g) = O, 

/.e. 

a -- ½ [2Zr(g + crV(h)V(h - g)/V(g)]. 

Equating m31 to zero gives 

m31 = crV(h)(2n'(h - 2or) + ~V(g )V(h  - g) = 0, 

cr = ½ [2n'(, + crV(g)V(h - g)/V(h)]. 

Thus, in order that the conditions m21 : m31 = 0 can 
be satisfied, a constraint is imposed, namely, 

2Zr(g + crV(h)V(h - g)/V(g) 

= 2zr(h + crV(g)V(h - g)/V(h). 

This is physically admissible since it defines a real locus 
along which the form exists and specifies a real value 
for or. Specifically, the locus is a line parallel to the 
bisector of the angle between the diffracted beams. The 
wave functions associated with this locus can be 
obtained by explicit calculation of the appropriate 
matrix elements. These are labelled with the subscript 
b. Thus, 

C.X3 
,,. \2n+ 1 

(glexp{iMz}10)b = ~ aV(g)m~ltlZ ) /(2n + 1)! 
n=0 
• • 1/2 1/2 = tcrV(g)(slnmll z)/mll . 

Similarly, 

• • I/2 1/2 (hlexp{iMz}10)b = lcrV(h)(sln mll z)/ml, . 

Further, 

1 / 2 ~  ice(sin ~1/2 _x /__1/2 (OIexp{iMz}]O/b = COSmll ,=- roll ~) / 'q l  • 
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mll = [0~ 2 + 02V2(g) + 0,2V2(h)] 

= {½ [2zrfg + 0,V(h)V(h - g)/V(g)]} 2 + 0,2V2(g) 

+ 02V2(h), 

so that 2rreg + 0,V(h)V(h - g)/V(g) -= 2rr( b is the 
effective excitation error and 0,V(g) + i0,V(h) - 0,V(b) 
the effective potential in the equivalent two-beam form, 

u(0) 
u(1) )  = exp{irr(bZ}E 

× e x p { i ( - - T r ( b  0,V*(b) ) z }  ( lo ) 
0,V(b) 7/'(b 

where 

Thus, 

u(1) = (glu) b + i(hlu)b. 

u(1) = exp{iTrfbz}i0, V(b) sin[(rrfb) 2 + 02 V(b) V* (b)]l/2z 

X [(Tr(b) 2 + 02V(b)V*(b)] -1/2, 

so that, typically, 

(glU)b = exp{i 1 [2rrfg + 0,V(h)V(h-  g)/V(g)]z} 

x i0,V(g) sin ({½[2rc(g+0,V(h)V(h-g)/V(g)]} 2 

_~_ 0.2 V2(g) + 0,2 V2(h))1/2 z 

x ({½ [2rr(g + 0,V(h)V(h - g)/V(g)]} 2 

.q_ 0,2 V2(g) + 02 V2(h)) -1/2 

In this form, therefore, the same two-beam intensity 
distribution exists along a locus in all three convergent- 
beam discs. Further, all of these loci are parallel to the 
bisector of the angle between the diffracted beams and 
displaced the same distances and in the same direction 
from the origins of the excitation errors. As it must be, 
this form is invariant under the interchange of h and g. 

The effective excitation error contains a triple 
product of the structure amplitudes and so at the outset 
the distribution of intensity along the two-beam loci in 
the convergent-beam discs is seen to be dependent on 
structural phase in a directly interpretable way. 

In fact, if it is only necessary to determine the relative 
phases of the structure amplitudes, then no further 
analysis is required. It is sufficient to set up a three- 
beam condition, identify the two-beam locus in any 
beam, find the centre of the distribution and deter- 
mine whether this point lies on the positive or negative 
side of the (g axis. This determines the sign of 
V(h)V(h - g)/V(g). The other two beams can be used 
as checks, a first example of redundancy in the solution. 
Another three-beam condition is then set up and the 
process is repeated. 

While the actual structure is centrosymmetric, the 
effective potential in the two-beam form, 0 ,V(b)= 
0,V(g) + irrV(h), is noncentrosymmetric, pictorially 

because of the asymmetry induced by the effective 
excitation error, 2rr(b ---- 2rr(g + 0,V(h)V(h - g)/V(g). 
This is a phase-dependent quantity so that the sign of the 
asymmetry can be considered as determining the sign of 
the structure amplitudes. 

For complete inversion, that is the determination of 
the magnitudes as well as the signs of the structure 
amplitudes, information derived from the other forms is 
required. It will be found that the two-beam distribu- 
tions associated with these forms derive from physical 
processes distinct from those described above. 

2 ( m , , o , ~ 3 )  spanned 3.4. The form defined by Mg = o e 
by the bases ~'4' 23' 28 m31 rn3j 

Equating m21 to zero gives 

ct = ½ [2rrfg + 0,V(h)V(h - g)/V(g)], 

while equating m23 to zero gives 

= 1 [27rfg + 2rrfh + aV(g)V(h)/V(h - g)]. 

Thus, the constraint imposed in order that the conditions 
m21 = m23 : 0 are satisfied is 

2rrfh = 0,V(h)V(h - g)/V(g) - aV(g)V(h)/V(h - g). 

Again, this is physically admissible since it defines a 
real locus and specifies a real value for or. Now, 
however, the locus is a line parallel to the (g axis. For 
this form, direct calculation shows that the locus is 
confined to the beam (gl and that the wave function, 
now labelled with the subscript g, is 

(glu) g = exp{i ½ [2zr(g - 0, V(h) V(h - g) / V(g)]z} 

x icrV(g) sin({½ [2zrfg - 0,V(h) V(h - g)/V(g)]} 2 

+ 0" 2V2(g ) + 02V2(h g)) 1/2 
- -  Z 

× ({½ [2Zrfg - 0,V(h)V(h - g)/V(g)]} 2 

+ 02V2(g ) + 02V2(h _ g))-l/2. 

AS with the locus 'b ' ,  the effective excitation error 
depends on the phase of the structure amplitudes in a 
directly interpretable way and, again, if only the 
relative phase of the structure amplitudes is required, 
then only the centre of the two-beam distribution need 
be located. The displacement of the centre, while equal 
in magnitude, is opposite in sign to that of the first 
locus. 

3.5. The form defined by M 2 = fro11 m12m22 ) k,'~ 1 0 and 
spanned by the bases 21, ).3, )-8 0 m33 

On equating m3z and m32 successively to zero, the 
analysis proceeds in an analogous fashion to that for the 
previous form with results that are identical when g and 
h are interchanged. This is to be expected since g and h 
are arbitrary labels. Explicitly, 
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(hlU)h = exp{i ½ [2zr( h -- o'V(g)V(h - g) /V (h ) l z }  

x i a V ( h )  sin({½ [2n'¢h-- o'V(g) V(h - g)/V(h)]} 2 

+ ¢r2 V2(h) + 0.2 V2( h g)) ,/2 
- z 

x ({½ [27r(g - ~ V ( g ) V ( h  - g ) / V ( h ) ] }  2 

+ ¢r2 V2(h) + o.2 V2( h _ g))-l/2 

4. Inversion 

In the convergent-beam disc (gl, the intersection of 
locus ' b '  with locus 'g '  defines the point (G l, G2) with 

G 1 = 2zr~g = trV(g)V(h - g)/V(h) 

- t rV (g )V(h ) /VOa  - g), 

G 2 = 2Yr(h = crV01)V(h -- g ) /V(g )  

- t r V ( g ) V ( h ) / V ( h  - g). 

The coordinates of this point were determined by 
Gjannes & Hoier (1971) from the condition for 
confluence of two of the eigenvalues of M 0. It will 
therefore be referred to as the Gjannes-Haier  point. 
The centre of the two-beam intensity distribution on 
locus g is given by 

G 3 = 2zr(g = trV(h)V(h - g)/V(g), 

t r V ( g ) V ( h ) / V ( h  - g) -- G 3 - G 2, 

so that 

crV(g)V(h - g)/V(h) = G~ - G 2 + G 3, 

trV(h)V(h - g)/V(g) -- G 3 

and the magnitudes of the structure amplitudes are given 
in terms of the directly measurable distances G l , G 2, G 3 
as 

0 2 v 2 ( g )  = (63  - ~ 2 ) ( 6 ~  - ~2  + c 3 ) ,  

0 - 2 V 2 ( h )  = G 3 ( G  3 - (];2) , 

o - 2 V 2 ( h  _ g )  = G 3 ( G  1 - G 2 + G3) .  

Along with the sign of G 3, which phases the structure 
amplitude, this completes the inversion. The inversion 
therefore requires an analysis of the geometry of the 
pattern only, rather than a matching of the intensity 
distribution across (¢g, (h)- 

There are numerous opportunities for checking the 
inversion. At any one thickness, the phase can be read 
separately from each of the three beams and the 
magnitudes of all the structure amplitudes can be 
obtained independently from either of the diffracted 
beams. In addition, the result is independent of 
thickness and, since each thickness generates indepen- 
dent data, extensive checking is possible. 

The steps to inversion via the Lie algebra method are 
summarized in the flow diagram of Fig. 1. 

5. Alternative derivations 

The above calculations rely only on the symmetries 
intrinsic to the scattering equations. These are modelled 
by relationships among the subgroups of anticommu- 
tator Lie algebras. This involves little manipulation, and 
in particular does not require explicit calculation of 
eigenvalues or eigenvectors. Methods which do, while 
tending to be lengthy, nevertheless often offer those 
additional insights that derive from different, though 
ultimately equivalent, models. 

Accordingly, two alternative derivations will be 
outlined, one based on projection operators and one 
on Bloch waves. 

In order to underline the relationship obtaining 
between the methods, as well as to define the notations, 
a few known results will first be summarized. 

With eigenkets ~t) and eigenvalues #j, 

Mo~t  ) = lzj~t), (it~t) : t~ij. 

If ~ t ) ¢ t l -  Pj, then l~j = ( t ) (J t ( t )¢ t l  = Pj. and 
PiPj = O, i # j .  

Also, 

MoPy = Mo~t)  (Jtl -- btjgt)  (Jtl =/z jPj ,  

and so 

f(Mo)Pj  = f (#j)Pj .  

If f ( x )  can be expanded in a Taylor series, since 
Ej  rj = E, then 

f (Mo)  = f (Mo)E = f (Mo) E Pj 
J 

= ~ Pjf(tzj) (Sylvester 's theorem). 
J 

Hence, 

(glSl0) : ~ (glJt)(~tl0) exp{i/zjz}. 
Y 

This latter result was obtained by Fujimoto (1959) by 
different methods. 

An alternative form for Pj may be derived from the 
integral representation 

S = exp(iMoz) 

= (1/2rri) ~ [ e x p ( i t z z ) / ( t z E -  Mo)] d/z 
N 

= ~ Pj exp(i/zyz) 
j=l 

with 

N 
Pj = H ( M o  -- ]'LIE)/(I'Lj -- ILl) . 

l=l 
q#J) 
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5.1. Derivation by means of projection operators 

It is convenient to work with the traceless matrix M~ 
so that ~--]3=~/z/= 0 and 

3 

(glSl0) = exp{2rri[(fg + (h)/3]Z} ~(glPjl0) exp{i#~z}. 
j = l  

A necessary condition that the wave function should be 
of  two-beam form is that one of  the (glP~10) should be 
zero. In this way ,  

(glP310) - (glM~10) - (/zl + #2)trY(g)  = 0 

and 

/z 3 = (2zr/3)(2fh -- (g) -- crV(h)V(h - g ) / V ( g ) .  

In addition, since P ~ + P 2 + P a = E ,  ( g l P ~ 1 0 ) =  
- ( g l P 2 1 0 )  and ,  a f t e r  s o m e  m a n i p u l a t i o n ,  

(glSI0) = exp{i ½ [2Zrfg + trV(h)V(h - g ) /V(g) ] }  

x i t rV(g ) ( s in  ~ z ) / ~ ,  

where 

= 1 (#1 -- //'2)" 

There is yet no guarantee that any of these relations 
have physical  validity. H o w e v e r ,  the root #3 must 
satisfy the characteristic equation,  so that 

I (-2~r/3)((~ + (h) -/z3 oV(g) oV(h) I 
oV(g) (2~r/3)(2(~ - (~, - #, oV(h - g) I = O. 
trV(h) oV(h - g) (2zr/3)(2(h - (t) - #3 

This factorizes into 

[2zr(g - 2zr(h + trV(h)V(h - g ) / V ( g )  

- crV(g)V(h - g ) / V ( h ) ]  

x [2zr(h - a V ( h ) V ( h  - g ) / V ( g )  

+ a V ( h ) V ( g ) / V ( h  - g)] = 0. 

T h u s ,  (g a n d  (h a re  c o n s t r a i n e d  to l ie on  a d e g e n e r a t e  
h y p e r b o l a ,  tha t  is, t w o  i n t e r s e c t i n g  s t r a igh t  l ines ,  a n d  
these  rea l  loc i  e n s u r e  p h y s i c a l  va l id i ty .  

(9) 

exp{iMhz} 
centre of any lb(~'): -G~ 

U 
PHASE (check) 

(l) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

[u) = S{O), where 

S = exp{iM0z } 
$ 

U(3) 
t 

S = exp{irlzlEexp{iM,z } 

U(I) SU(3) 
t 

sinflz (qlSt0) = exp {iaz }i g---ff-- 

I (qlM2qO)=O, M = ( r / - c t ) E + M ,  [ 

[ M.=,a,A,+,a,A.+,a~As+~a,A,+,atA, [ 

{A"A'} = 45°E + 2d'~A' 1 

[ M:'=2.atA'+2.a'A'+2.a¢;~'+2.ar~'3+2.ar~', I 

(8) 

spanned by A 4, A 3, A, 

m~,m2l:O0} malt/ 

0 / 
M~ = m22 m2~ 

m32 m33 

same two beam locus, lb( ~ 
in beams 0, h, g 

spanned by Z4. A~, A t : 

/-, 0 :q 
M 2. = 0 m~ 

11 
two beam I~us. X,(~) 

in beam g 

I ~----~mtersection t 

(G,!G~) 

(10) 

exp{iM z} 

centre of 1,(~): G 3 
U 

_..pHASE 

o~ v%) = (o,- 02)(o,- o2+ 0,) 
o 2 V 2 (h) = G,(G 3- G: ) 

tr z VZ(h - g) = G,(G,-  GA+ G,) 

spanned by A~, A3, As: 

m3~ = 0~ 
rrt32 ---- OJ real /7 

°o/ 
0 m3~ 

ll 
two beam l~us. k(g) 

in beam h 

intersection l 

(G~,G:) (check) 

exp{/Mh~} 
centre of Ih((): Gs 

11 
PHASE (check) 

Fig. I. Flow diagram for inversion by Lie algebra 
method. (1) Defining equations and symmetry, 
U(3). (2) Factorization into U(1) and SU(3). (3) 
General form of two-beam equation. (4) Condi- 
tion that (q[Sl0) is antisymmetric in z. (5) 
Expansion into Gell-Mann representation. (6) 
The anticommutator symmetry of SU(3). (7) 
Expansion of even powers of M into Gell-Mann 
representation. (8) The three sub-algebras of 
su(3) defining the loci in each of the three beams. 
(9) Phase can be read off from each beam. (10) 
Structure amplitudes in terms of two points on 
the loci. 
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By comparing the coefficients of the characteristic 
equation with the corresponding elementary symmetric 
functions of the roots, (/z~ - /x2)  can be calculated and 
hence all of the previous results can be recovered. 

Although lengthier calculations are involved in 
implementing this method than in implementing the 
previous one, explicit calculation of the eigenvalues and 
the eigenvectors can be avoided. 

The steps to inversion via this projector-operator 
method are summarized in the flow diagram of Fig. 2. 

5.2. Bloch-wave approach 

Bloch introduced the functions that bear his name as 
the basis functions for a Lie group, specifically the 
translation group. Since the operators of this group 
commute with the Hamiltonian for a crystal in the one- 
body approximation, the form of the eigenfunctions is 
obtained immediately as exp{ik, r}u(r), u(r) having the 
periodicity of the crystal. In Bloch's vivid imagery, the 
orthonormal set takes the form of carrier waves 
modulated by the periodicities of the lattice and the 
momentum-space representation leads, by analogy with 
optics, to the equally graphic model of dispersion 
surfaces. 

Independently of Bloch, Bethe constructed those 
functions in the course of his description of dynamical 
electron scattering. Having expanded the potential in 
the crystal in a Fourier series, he wrote the wave 
function as 

~(r)  = ~f~/ot~-~fiCg exp{2yri(Jk + g).  r} 
J g 

using the notation conventional in this formulation 
(Hirsch, Howie, Nicholson, Pashley & Whelan, 1977). 

(I) 

(2) 

(3) 

(4) 

(6) 

S = ¢xp{iMoz} = cxp{ilTz}Ecxp{,~/l.z } 

t 
I/~',~> =° 1 

t 

f 
[ ~t-.,~=0 I I " " ~ ' 1  

' t t 
"C ~ ontinue from Box (8) 

of Fig. 1 ] 

(5) 

Fig. 2. Flow diagram for inversion by projection operator method. (1) 
Defining equations in terms of Dirac projector operators in a 
traceless matrix. (2) Condition for two-beam forms. (3) Third 
eigenvalue determined directly from condition (2). (4) Given #3 is 
an eigenvalue, (4) must hold. (5) Calculation of other two 
eigenvalues from #3. (6) Factorization of (4) to give real loci. 

Here, Jc~ is the excitation amplitude of Bloch wave j and 
J C s are the eigenvectors. 

With the application of standard boundary conditions, 
Jot = JC~ for a noncentrosymmetric crystal and Jot = JC0 
for a centrosymmetric crystal. Hence, the amplitude for 
beam g is 

u(g) = ~-~JC~Cg exp{2rri(Jk + g)tz}. 
J 

This is clearly the same relation as 

(glSl0) = ~-~(glJt) ( Jtl O) exp{i#jz} 
J 

and, indeed, it is a straightforward matter to cast the 
Bloch-wave treatment into eigenvalue form. In order to 
retain the more distinctive elements of the nomenclature 
of that formulation, the eigenvalue equation will now be 
written n o l J C )  = JylJC). 

In the three-beam case, it is apparent that if one of the 
three Bloch waves is not excited, that is, if 1 Co or 2C o or 
3C 0 is zero, it may be possible to find a set of 
orientations for which the beams 0, g and h all have 
two-beam form. 

In order to explore this possibility, the eigenvalue 
equation is expanded and C h eliminated to give 

[o~ V(g)V(h) + ×,,V(h - g)]C0 

= [o2V(g)V(h - g) - oV(h)(2rr~'g - Y)lCg, 

[o '2V2(h) 4- y (2z r (  h - y ) ]Co  

= [aV(g)(2Jr(h -- ~,) -- a2V(h)V(h - g)]Cg. 

With 3C 0 = 0, 

3 y = 2n.~. h _ crV(h)V(h - g)/V(g) 

= 2n'¢g - aV(g)V(h - g)/V(h). 

Thus, the unexcited Bloch wave has the eigenvalue 
2rreg - o'V(g)V(h - g)/V(h) and the real locus 
shows that the condition 3 C 0 = 0  is physically 
admissible. 

If the conditions J Cg = 0, JC o # 0 for j = 1, 2 or 3 
can be shown to be admissible, then there will be a two- 
beam intensity distribution along a locus in beam g 
only. 

With 3Cg - - 0 ,  

3 y = - t r V ( g ) V ( h ) / V ( h  - g) 

= {2:r~h 4-[(2n~h) 2 + 4a2V2(h)]W2}/2, 

so that 

2zr~h = aV(h)V(h - g)/V(g) - a V ( g ) V ( h ) / V ( h  - g) 

is another real locus. 
Since g and h are merely labels, it is only necessary 

to interchange them in order to obtain the results for the 
two-beam locus that exists in beam h alone. 
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All of the two-beam wave functions can now be 
calculated by straightforward elementary but lengthy 
algebra to recover the previous results. This lengthy 
manipulation is a recurrent difficulty encountered in 
the implementation of Bloch-wave methods, and one 
that can often be mitigated by a change in representa- 
tion. It is not, for instance, necessary to calculate 
eigenvectors explicitly since only the products JCgJCo 

appear in the final wave function and J CgJCo = 

( g l J f ) ( J C l O ) ,  a matrix element of the projection 
operator Pj = I J C ) ( J C I .  Here, the operator is written 
in the basis of the eigenvectors but other bases can be 
chosen or, indeed, other representations, for instance 
the integral representation, 

(1/2rci) f [ e x p ( i ) / z ) / ( y E  - Mo) ] dy, 

so that 

(I ) Ug = ~ g ,_I~,(Mo-tgE)/(J)/-ty) 0 exp{Ugz}. 
J 

tCj 

Now the frequently lengthy process of calculating 
eigenvectors in easily assimilable forms, as distinct 
from formal expressions, is replaced by matrix multi- 
plication. Further, the eigenvalues are assembled as 
differences and symmetric functions so that, as in the 
present instance, explicit values may not be required. 

In the Bloch-wave treatment, however, each eigen- 
value J)/is pictorially the distance of the wave point on 
the branchj of the dispersion surface from the centre of 
the Ewald sphere. In order to learn more about the 
geometry of inversion, explicit values were therefore 
calculated. 

These are, with 3)/the eigenvalue of the Bloch wave 
[unexcited for the locus given by (a) below]: 

(a) For the line 

2rC~g + c r V ( h ) V ( h  - g)/V(g) 

--  2n'~" h + a V ( g ) V ( h  - -  g ) / V ( h ) ,  

~,2)/_ 1 [2rr~.g + a V ( h ) V ( h  - g)/V(g)] 

4- ({½ [2rr~g + a V ( h ) V ( h  - g)/V(g)]} 2 

+ 0" 2 V2(g ) + 0" 2 V2(h))1/2 

3 ) / =  2:rr~. h _ a V ( h ) V ( h  - g)/V(g). 

(b) For the line 

2rC~h = a V ( h ) V ( h  - g)/V(g) - a V ( g ) V ( h ) / V ( h  - g), 

1,2]/ = 112~-g at - a V ( h ) V ( h  - g)/V(g)] 

4- ({½ [2rr~g - a V ( h ) V ( h  - g)/V(g)]} 2 

+ 02 V2(g ) + 0" 2 V2(h _ g)) 1/2 

3 ) / =  - a V ( g ) V ( h ) / V ( h  - g). 

(c) For the line 

2:rrfg = a V ( g ) V ( h  - g)/V(h) - c r V ( g ) V ( h ) / V ( h  - g), 

1.2y = ½ [2rr~. h + a V ( g ) V ( h  - g)/V(h)] 

+ ({½ [2n'~" h -- a V ( g ) V ( h  - g)/V(h)]} 2 

+ a2 VZ(h ) + a2 V2(h _ g))1/2 

3)/ = - a V ( g ) V ( h ) / V ( h  - g). 

These relations describe the fundamental structure of 
the general centrosymmetric three-beam dispersion 
surfaces. The branch 3y has two lines, each of height 
- c r V ( g ) V ( h ) / V ( h - g )  relative to the centre of the 
Ewald sphere, running parallel to, but at different 
distances from, the ~g and ~'h axes. A third line ruled on 
the surface runs parallel to the bisector of the angle 
between the other two and has a height given by 
2Zr(h -- a V ( h ) V ( h  - g)/V(g). These lines characterize 
the system. The sections of branches 29/ and ly that 
contain the lines are hyperbolic. For all these branches, 
the eigenvalues are distinct except at the Gjonnes-Hoier 
point, 

(2rr~'g = a V ( g ) V ( h  - g)/V(h) - c r V ( g ) V ( h ) / V ( h  - g), 

2zr~" h = a V ( h ) V ( h  - g)/V(g) - a V ( g ) V ( h ) / V ( h  - g)), 

where 

2 y  =3y  = - a V ( g ) V ( h ) / V ( h  - g). 

At this point, 

1y  = a V ( g ) V ( h  - g)/V(h) + a V ( h ) V ( h  - g)/V(g), 

so that the centre of the hyperbola is displaced and this 
displacement, which again can be measured experimen- 
tally, completes the inversion in the Bloch-wave 
picture. 

Clearly, the inversion could have started with the 
analysis of the algebraic geometry of the dispersion 
surfaces. The algebraic geometry of cubic surfaces has 
been extensively studied. The 27 lines ruled on cubic 
surfaces were discovered by Cayley & Salmon in 1849 
(see, for instance, Henderson, 1911). 

The steps to inversion using the Bloch-wave method 
are summarized in the flow diagram of Fig. 3. 

6. Discussion 

It emerges that the symmetries inherent in three-beam 
scattering from a centrosymmetric crystal are com- 
pletely described by the group SU(3). One consequence 
of this is that three su(2) sub-algebras can be used to 
invert the system. In other words, three lines intersect- 
ing at a single point and ruled on one of the dispersion 
surfaces encapsulate all of the physical content of the 
system. Heavy redundancy in the solution suggests that 
an extension into the non-centrosymmetric case should 
be possible. 
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The symmetries of Lie groups depend continuously 
upon at least one parameter, so that the crystal 
orientations that exhibit these most clearly are very 
different from those sought in order to expose the 
symmetries of the crystallographic groups. In other 
words, the three-beam patterns required for inversion 
exhibit the symmetries of SU(3) rather than those of the 
space group. 

There are two special cases of this analysis: the 
critical voltage and the intersecting Kikuchi line. In the 
former, the three beams lie on the same line so that the 
full symmetry of the system cannot be displayed and 
inversion is no longer possible. In this degenerate 
system, the loci coincide and the expressions reduce to 
the standard form for the critical voltage. The relation- 
ship between the critical-voltage method, the intersect- 
ing Kikuchi-line technique and hence the GjBnnes- 
Hoier point has been discussed by Tafto & Gj~nnes 
(1985). 

The practicability of the inversion is currently under 
investigation. Preliminary experiments will be reported 
in separate publications; however, results obtained so 
far indicate that the quantity most readily determined is 
the phase. Once any of the two-beam loci has been 
identified, the displacement is easily detected. 

Two main difficulties have been encountered in 
determining the structure amplitudes with accuracy. 
The first relates to the sufficiently accurate determina- 
tion of the Bragg angle, that is, the origin of 
coordinates. The second arises because of the preva- 
lence of N-beam scattering, which contributes a pseudo- 
potential component even to apparently three-beam 
systems. Since the inversion is independent of thick- 
ness, some correction is possible but it is not yet clear 
how far this process can be extended. In any event, it 
would appear that, at least in favourable circumstances, 
structural centrosymmetric phase can be measured 
directly in convergent-beam diffraction. 

This theory is, of course, scalar, but the equations 
defining X-ray dynamical scattering, when resolved into 
circularly polarized components, can be cast into a form 

isomorphic with those of electron diffraction (Moodie & 
Wagenfeld, 1975). Apart from numerical factors, the 
above analysis then applies to the right circular 
component of the wave function for X-rays. Since the 
wave functions of right- and left-handed components are 
complex conjugates, results for arbitrary polarization 
are readily obtainable. There is, however, a good deal 
of detail to be considered and this will be the subject, of a 
separate publication. 
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A P P E N D I X  A 
T h e  Gell-Mann generators for SU(3) 

Since SU(2) is a subgroup of SU(3), the first three 
generators can be obtained by direct extension of the 
Pauli matrices, the generators of SU(2), (01 ) (0 

21 1 0 , "~2 = i 0 

0 0 0 0 

The remaining 

fo 
2 4 - - -  0 

1 

0 

' ~ 6 :  0 

0 

01 
0 

five are 0!) (00) 
0 , 2 5 =  0 0 , 

0 i 0 

0 , 27 = 0 --i , 

1 i 0 

(1) 

(,2) 

(3) 

(4) 

] %=0 I 

' r :  2~C, - aV(h)V(h- g) 
v(g) 

: 2,~C. - ov(g)v(h- s) 
V(h) 

? 

[ ,c0,c. exp{2.('k + ,)z} 

1%:0and'C.,0 I 
' 7 :  o'V(g) V(h) 

V(h-g) 

2rr( h trV(h)V(h-g) trVIg)V(h ) 2~(i = trV(g)V(h-g) 
V(g) V(h-g) 

1 I 
I The geometry of dispersion surface "3" chamcu:rises 

all cemrosymmetric three beam systems [ 

Continue from Box (8) 
[__ of F gure 1 I 

T 
] JCh:0 and 'C,~0 ] 

t 
,7 = o'V(g)V(h) 

v(h-g) 
g)V(h- g) orV(g)V(h) 
V(h) V(h-g) 

? Fig. 3. Flow diagram for inversion 
by Bloch waves. (1) Defining 
equations. (2) Conditions for 
two-beam forms. (3) Loci and 
corresponding eigenvalues of 
branch three. (4) Remaining 
eigenvalues on branches one and 
twO. 
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Table 1. The symmetric structure constants of the 
anticommuting algebra of SU(3) 

118 1/31/2 355 1/2 
146 1/2 366 - 1/2 
157 1/2 377 -1/2 
228 1/31/2 448 -1/(2 × 31/2) 
247 -1/2 558 -1/(2 × 31/2) 
256 1/2 668 -1/(2 × 31/2) 
338 1/31/2 778 - I / (2  × 31/2) 
344 1/2 888 - 1/31/2 

1( 0 
-- 1 0 . 

28 ~ 0 - 2  

Structure constants for the ant icommutator  Lie 
algebra can be calculated f rom the relation 
d0k = tr({2i, 2j}2k). They are necessari ly symmetr ic  
and are listed in Table 1. These and related matters  
are discussed, for instance, by Greiner  & M/iller 
(1992). 
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